
Using Gossip Enabled Distributed Circuit Breaking
for Improving Resiliency of Distributed Systems

Aashay Palliwar
School of Electrical Sciences

Indian Institute of Technology Bhubaneswar

Bhubaneswar, India

avp10@iitbbs.ac.in

Srinivas Pinisetty
School of Electrical Sciences

Indian Institute of Technology Bhubaneswar

Bhubaneswar, India

spinisetty@iitbbs.ac.in

Abstract—Distributed systems are rife with failures. Several
resiliency patterns are used to improve the ability of these systems
to tolerate faults and maintain functionality. The circuit breaker
pattern is a popular resiliency pattern that is especially suitable
for the case when the faults causing dependency failures take a
variable amount of time to resolve. In this paper, we propose
a modification to the traditional circuit breaker pattern. We
also propose a gossip-based information dissemination protocol
that enables the (modified) circuit breakers deployed on multiple
client-service instances to take a concerted and more informed
decision when a common dependency is facing persistent failures.
We formally model the client-server systems that use traditional
and the proposed distributed circuit breaker patterns in UPPAAL
to analyze and compare their performance. The statistical
model checking queries performed on the models show that,
as compared to the traditional circuit breaker pattern, the
distributed version results in fewer unsuccessful requests, that
consume system/network resources, with practically the same
total execution time under various availability conditions - only
at the famously low cost of a robust gossip-based information
dissemination protocol.

Index Terms—Circuit Breaker, Formal Modeling and Analysis,
Gossip Protocol, Microservices, Resiliency Patterns, Statistical
Model Checking, Timed Automata, UPPAAL

I. INTRODUCTION

Systems using architectural paradigms like service-oriented

architecture [1] and microservice architecture [2] have one idea

in common. These distributed systems are composed of loosely

coupled reusable software components that communicate and

coordinate over a network to serve a request or accomplish a

task. These components are often separate processes and are

deployed on different machines.
Distributed systems are susceptible to a number of failures.

The individual nodes in a distributed environment may fail

due to software or hardware faults. Communication among

nodes may fail due to network partitions or congestion. A

node may become unavailable to other nodes due to a high

load and lack of resources to handle new requests. Requests or

actions that require coordination of several nodes might fail if

some nodes are experiencing such failures. Some failures are

self-correcting - a failed action may succeed on subsequent

retries. Some failures might require a variable amount of time

to resolve (with or without human intervention).
Another problematic scenario is that of a cascading failure

down the dependency chain. Whenever a service instance/node

receives a request, it allocates certain system and/or network

resources for fulfilling that request. If the rate of arrival

of requests (R1) is less than the rate of handling requests

(R2) (and hence less than the rate of releasing the held up

resources), the node stays stable. However, if R1 becomes

greater than R2, the resources would be used up quickly

and the node may become unresponsive or unavailable. This

is a scenario where the node becomes unstable. Engineers

deploying a system take into account relevant estimation of

these factors during the capacity planning of the system and

allocate resources accordingly. In case when a service on

which the node is dependent becomes unavailable or faces

persistent failures, the rate R2 may decrease suddenly and

render the node unstable and eventually unavailable. This

might start a cascade of failures down the dependency chain

if relevant measures are not taken to detect a dependency

unavailability and remedy the situation.

A system’s ability to handle failures and recover from

them constitutes its resiliency. A resiliency pattern [3] is an

architectural pattern for service-service interaction that helps

prevent cascading failures and maintain functionality in case of

dependency failures. There are several resiliency patterns, e.g.

bulkhead pattern [4], retry pattern [5], circuit breaker pattern

(CB) [6] etc. A caller process using the bulkhead pattern

isolates resources for each service dependency so that failure

of one dependency does not cause requests to pile up and use

up critical resources. If the resources are used up, it might

prevent calls to other service dependencies from succeeding.

Software components employing the retry pattern transparently

retry failed requests a number of times as per the retry policy.

If the request still fails after multiple retries, the request is

declared to be failed. The retry pattern works well only for

failures caused due to transient faults. These faults are often

self-correcting, and if the action is repeated after a suitable

delay, the action is likely to succeed. For failures caused due to

faults that take a variably large amount of time to get resolved,

the circuit breaker pattern is more suitable.

M. Nygard popularized the circuit breaker pattern through

[7]. Electrical circuit breakers detect a surge of current and

save an electrical system from a current it cannot handle. In

a similar way, for a client-server system, a circuit breaker

module uses the present success-failure statistics to infer a

13

2022 IEEE 19th International Conference on Software Architecture (ICSA)

978-1-6654-1728-0/22/$31.00 ©2022 IEEE
DOI 10.1109/ICSA53651.2022.00010

20
22

 IE
EE

 1
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
A

rc
hi

te
ct

ur
e

(I
C

SA
) |

 9
78

-1
-6

65
4-

17
28

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SA
53

65
1.

20
22

.0
00

10

Authorized licensed use limited to: Indian Institute of Technology - BHUBANESWAR. Downloaded on May 30,2022 at 11:50:20 UTC from IEEE Xplore. Restrictions apply.

probable server failure and restricts the flow of requests to

the server for a predefined time interval as the server might

not be able handle the requests at the moment. This saves an

already suffering server from additional load and also prevents

client resources from being held up unnecessarily for making

requests that are very likely to fail.

The circuit breaker module may be implemented on the

client-side, on a proxy or on the server-side. The disadvantage

of using a server-side or a proxy circuit breaker is that network

partitioning or proxy/server failure may render the circuit

breaker module unavailable to the clients. The clients would

not have any advantage of circuit breaking whatsoever during

such failures. Several production-grade solutions like [8], [9],

[10] provide libraries with circuit breaker implementations that

may directly be used on the client-side.

A simple circuit breaker infers a server unavailability when

a failure threshold is crossed. If there are multiple client

instances that use client-side circuit breaker solutions for

interacting with the same server, each client has to face

failures beyond the set threshold for their circuit breakers

to infer a server unavailability. Resiliency may be improved

if the nodes can take a more informed and early decision

about restricting the request flow based on each other’s

success/failure statistics instead of trying to infer dependency

unavailability individually.

As an extension to the Polly Project [9], D. Reisenberger

provided a proof of concept [11] for a circuit breaker that

utilizes the knowledge of multiple clients to improve the

resiliency. It provided a single implementation which uses

the durability and reliability guarantees of Azure Entity

Functions [12]. This implementation accumulates and stores

success/failure statistics across calls made by all instances

consuming the common service. In essence, this work

provides a scheme where multiple clients may use the same

circuit breaker. However, the idea is susceptible to network

partitioning. It also adds a latency overhead as a remote call

is necessary for checking the circuit breaker state every time a

dependency call is to be made. The clients also have to know

in advance the identity of the circuit breaker group to take

advantage of the group knowledge.

In this paper we provide a modified version of the

traditionally used circuit breaker pattern which, coupled with

the proposed gossip-based protocol, provides a distributed

circuit breaking scheme that is resilient to network partitioning

and to the changes in the set of clients interacting with a

common dependency. The gossip-based protocol facilitates

self-organization of clients into groups that may share each

others’ knowledge for a faster circuit breaking. The proposed

scheme does not add any overhead to the remote calls.

The results obtained from the model-based statistical analysis

show that as compared to the traditional client-side circuit

breakers, the proposed distributed version results in fewer

unsuccessful requests, that consume system/network resources,

with practically the same total execution time under various

availability conditions. To the best of our knowledge, this is

the first work proposing a distributed circuit breaking scheme

enabled by a gossip-based information dissemination protocol.

The rest of the paper is organized as follows: Section II

describes the functioning and the philosophy behind working

of the circuit breaker pattern. In section III we introduce

the notion of distributed circuit breaking and discuss how it

may be implemented. Section IV specifies the gossip-based

protocol that is at the core of the proposed implementation

for distributed circuit breaking. In Sections V and VI, we

describe how we formally modeled the systems and measured

the efficacy of our proposals. We discuss the trade-offs to

be considered while selecting the parameter values for the

implementation of the proposed pattern in section VII and

then conclude in section VIII.

II. CIRCUIT BREAKER PATTERN

In this section, we first describe the functioning of a simple

circuit breaker (CB) module and then explain the philosophy

behind the working of the resiliency pattern.

A. Functioning of a Circuit Breaker Module

The client instance that uses the circuit breaker pattern

includes a module that tracks the success and failure status

of requests which it makes to a server instance (dependency).

Several policies may be defined for the working of CB which

might differ in the way the failure metric is calculated. Some

policies may involve varying the parameters in response to

certain events. Figure 1 shows the state machine for a simple

circuit breaker with parameters mentioned in Table I.

A client starts with its circuit breaker in the closed state. The

client-server (or caller-callee) interaction is unhindered when

the circuit breaker is in the closed state. We may constitute

request timeouts as failures for the sake of explanation. If

F timeouts are encountered in the last WS requests, and F

is greater than the threshold FT, the circuit breaker moves

to the open state. No requests are forwarded to the server

(dependency) when the circuit breaker is in the open state.

Instead, responses with appropriate messages are returned

immediately. After the time duration OD, the circuit breaker

moves to the half-open state. In this state, a few requests

from the set of pending requests are made to the server. If

the number of successful requests S goes beyond a threshold

HOST, the circuit breaker moves to the closed state, and the

client-server interaction becomes normal again. If the failure

threshold HOFT is crossed while in the half-open state, the

circuit breaker transitions to the open state.

B. Philosophy Behind the Working of the CB Pattern

When the number of failures in the closed state crosses

the empirically decided failure threshold FT, it indicates some

problem with the server instance that might have rendered it

unavailable. A failure threshold that is greater than 1 may be

used so as to gain sufficient confidence that the fault causing

the dependency unavailability is not transient in nature.

Not forwarding any requests when the circuit breaker is

in the open state will help reduce the stress on an already

suffering server. On the other hand, returning an immediate

14

Authorized licensed use limited to: Indian Institute of Technology - BHUBANESWAR. Downloaded on May 30,2022 at 11:50:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: State machine for a simple circuit breaker module

Fig. 2: State machine for a Distributed Circuit Breaking Node

failure response would not tie up the client resources for

making requests that will probably fail.

After the predefined delay OD, the circuit breaker moves to

the half-open state and the client tries sending some requests.

Encountering failures would indicate that the fault causing

dependency unavailability is yet to heal, and hence the circuit

breaker moves back to the open state. On the other hand,

successful requests beyond a threshold would indicate that the

dependency is up and running correctly and hence the circuit

breaker moves to the closed state.

III. DISTRIBUTED CIRCUIT BREAKING

Let us consider a system with multiple client instances

using the simple circuit breaker pattern that we described

in Section II. Let us also assume that all these clients are

dependent on a single server instance and all these clients send

requests to this instance. If the server becomes unavailable,

every client continues sending it requests until the number of

failures experienced by it crosses the failure threshold and its

circuit breaker transitions to the open state. Every client infers

a possible dependency failure on its own.

A. Observations and Proposal

Observation 1: If the server suffers from a failure caused

due to faults which are local to the server and which require a

Parameter Meaning
WS Window Size

S Number of Successes

F Number of Failures

FT Failure Threshold

HOFT Half-Open Failure Threshold

HOST Half-Open Success Threshold

OD Open Duration

TABLE I: Parameters of a simple circuit breaker

Parameter Meaning
SST Suspicion Success Threshold

SFT Soft Failure Threshold

HFT Hard Failure Threshold

TABLE II: Additional parameters for DCBN

variably large amount of time to resolve, the server becomes

unavailable to all the clients simultaneously.

Observation 2: If a client C finds the server S to be

unavailable as a result of the two being in different network

partitions, all other clients in the same network partition as

that of C also find the server S to be unavailable.

We claim that all correctly functioning clients in a

given network partition start to face server unavailability

simultaneously if the faults causing the unavailability are

not transient in nature. Transient faults may well be due

to network congestion or issues local to the client. All

clients may not experience failures caused due to transient

faults simultaneously. Thus, if the faults causing the server

unavailability requires a variably large amount of time to

resolve, the clients present in the same network partition would

start facing an increasing failure trend roughly around the

same time. If this group of clients is able to detect (via some

mechanism) that a suspicious increase in failures is being

experienced by a majority of the clients in the group, the

circuit breakers that are distributed over several client nodes

can make a concerted decision to transition into the open state.

In order to define a suspicious failure trend, we propose

a soft failure threshold (SFT) - a threshold that is lower

than the original failure threshold of the traditional circuit

breaker pattern (now referred to as the hard failure threshold

- HFT). Failures beyond SFT would indicate a suspicion that

the dependency might be facing issues. The SFT value may

be decided to be high enough to rule out transient failures. As

the SFT value may be considerably lower than HFT, clients

can infer a possible server failure faster (with the help of a

mechanism to know other clients’ failure trends) than they

would have otherwise done. Due to a faster inference of a

dependency failure and, thus, a quicker transition of the circuit

15

Authorized licensed use limited to: Indian Institute of Technology - BHUBANESWAR. Downloaded on May 30,2022 at 11:50:20 UTC from IEEE Xplore. Restrictions apply.

breaker to the open state, critical client and network resources

would be held up for a lesser amount of time for making

requests that are very likely to fail. When the server instance

is unavailable, client service instances can fall back faster to

a cache or a third party in order to serve the arriving requests,

thus improving the externally observed user experience.

We call this scheme, where a group of clients use the

knowledge of each other’s failure trends in order to make a

cautious and more informed choice of moving their circuit

breakers to the open state, as "Distributed Circuit Breaking"

or DCB. Figure 2 shows the state machine for the individual

circuit breaker that is proposed to participate in the distributed

circuit breaking scheme. From here on, we refer to this circuit

breaker module as "Distributed Circuit Breaking Node" or

DCBN. Table II provides the additional parameters required

for the functioning of DCBN.

We introduce a suspicion state to the DCBN state machine

in addition to the states present in the state machine of

the traditional circuit breaker pattern. When the number of

failures crosses the threshold SFT, the DCBN transitions to

the suspicion state. For the circuit breaker pattern, the closed

state is the only state that corresponds to a situation where

the client-server interaction is unhindered and as expected.

All other states indicate a recent issue in communicating with

the server. When a client’s DCBN is in the suspicion state,

it uses a mechanism (that we will propose in section IV) to

monitor if a majority of clients in the same network partition

also do not have their DCBNs in the closed state. If so, the

client’s DCBN immediately transitions into the open state

as a majority of clients are facing issues in communicating

with the server and the suspicion stands validated. If such a

majority is not observed and in the meanwhile, the number of

failures crosses the hard failure threshold, the circuit breaker

transitions to the open state as it would have done in the case

of a traditional circuit breaker. If a client is not observing any

persistent server unavailability, its DCBN will never transition

to the open state and prevent the client from making remote

calls. This is because a client’s DCBN may transition to the

open state only from the suspicion state. A client’s DCBN

enters the suspicion state only if it is experiencing failures

itself.

B. Strategy for Implementing DCB

In a distributed system, service instances may come up or

go down over time due to failures or scaling the services up

or down. Reliably and efficiently discovering the identity and

DCBN states of all other client nodes which are interacting

with the same server node in the same network partition is a

challenging task. One solution can be to have a new service

responsible for keeping the record of active clients, their

identities (say IP address), and their DCBN states. However,

the consumption of such a service would be susceptible to

server-side failures as well as network partitioning. Such faults

might cause the pattern to not work at its full potential.

The seminal work by Demers et al. [13] was the first to

adopt the concepts from epidemiology to solve the problem

of information dissemination in distributed systems. The

proposed methods in [13] took inspiration from how rumors

spread quickly by certain social interactions or gossiping.

Instead of flooding the network with information or one-one

interaction of all nodes, the gossip protocol depends upon

periodic interactions between each node and a small randomly

chosen subset of all nodes.

Following the original work of Demers et al., several others

proposed and analyzed variants of gossip-based protocols for

a variety of use cases such as to detect failures [14], compute

aggregates [15], maintain membership information in P2P

networks [16] etc. In [17], K. Birman mentioned a few benefits

of gossip-based protocol. The work highlighted how gossip-

based protocols are simple to implement, robust to transient

network disruptions, can be designed to converge quickly and

provide bounded load on the participating nodes. Owing to

these properties, the gossip-based approach is used in several

complex systems like [18], [19], [20]. Keeping in mind these

favorable properties, we propose a gossip-based protocol to

implement an efficient information sharing mechanism within

a group of clients for the DCB scheme. We also utilize

the behaviour of gossip-based protocols towards persistent

network failures to ascertain if a given client belongs to the

same network partition or not.

We adopt the following scheme of gossiping as the core of

the protocol described in Section IV for DCB:

• In the first stage, a node with a piece of information shares

it with a fixed number of randomly selected nodes in the

cluster.

• At the next stage, every node with the piece of information

shares it with a fixed number of nodes chosen randomly and

independently of the past and present choices.

• This process is repeated at regular intervals.

This scheme of gossiping is similar to that of spreading a

rumor. In [21], B. Pittel estimated that a system using the

above scheme, that consists of N nodes (where N is large),

requires O(log N) stages of gossiping (expected number of

stages) before the information reaches all the nodes in the

system.

We call this scheme where we couple DCB nodes with

the proposed gossip-based protocol for facilitating distributed

circuit breaking as “Gossip Enabled Distributed Circuit

Breaking” or GEDCB.

IV. PROPOSED PROTOCOL FOR IMPLEMENTING GEDCB

The proposed protocol consists of two phases - A and B.

Both the phases of the protocol run in parallel. Phase A of

the protocol is responsible for efficient and reliable sharing

of information about the DCBN states of the clients, that are

interacting with a given server, amongst each other. Phase B

of the protocol keeps the set of clients participating in the

gossip-based information dissemination up to date (and thus

facilitates the discovery of client nodes which are interacting

with the server in context).

16

Authorized licensed use limited to: Indian Institute of Technology - BHUBANESWAR. Downloaded on May 30,2022 at 11:50:20 UTC from IEEE Xplore. Restrictions apply.

A. Phase A: Client-Client Gossiping

For illustration, let us assume that there are five clients

consuming the dependency service S and that they already

know each other’s identities.

Fig. 3: Example GS state of client #2

Let us call the set of clients that participates in the gossiping

process as the gossip-set. In the context of GEDCB, the gossip-

set should ideally include all the clients that are interacting

with the same server instance. As shown in Figure 3, every

client maintains a state (hereafter referred to as gossip-set

state or GS state) that consists of opinions and ages (of

corresponding opinions) about all the clients in the gossip-

set. An opinion of value 0 indicates that the DCBN is in the

closed state and a value of 1 indicates that the DCBN is not in

the closed state. The age of an opinion is the number of gossip

cycles completed since the opinion originated from the source

of truth. If the client #2 has a GS state as shown in Figure

3, it infers that client #4’s DCBN was not in the closed state

three gossip cycles ago. It infers that client #1’s DCBN was

in the closed state before two gossip cycles and so on. The

self-opinion is always zero gossip cycles old as it is updated

by the client itself in realtime.

After every T1 unit of time (time period of gossiping),

every client increments the age of all opinions (except the

self-opinion) and gossips (sends its own state) to a randomly

selected fixed-size subset of all the clients in its gossip-set.

On receipt of a gossip message, a client updates its own GS

state with opinions of a smaller age.

Fig. 4: Example GS state update for client #4

Figure 4 shows how the GS state of client #4 is updated

when it receives a gossip message from client #2. Client

#4 finds opinions of smaller age about clients #1 and #2 in

the gossip message received and hence it assimilates these

opinions into its own GS state.

Every client keeps gossiping with a self-opinion of zero age

and acts as the source of truth for the state of its own DCBN.

Since the opinions that reflect the latest information about the

DCBN states are always of a smaller age than the opinions

that were shared via gossip messages previously, the latest

information about the DCBN states is always assimilated by

the receiving client. Owing to the property of the gossiping

process, the latest DCBN state information eventually reaches

all the clients.

If a node in the gossiping set of nodes goes down or

becomes unreachable due to network partitioning, there will

be no source of truth for the state of this node’s DCBN.

Subsequent gossip cycles would cause the age of opinion about

this node to increase incessantly. To address this, an empirical

threshold is fixed beyond which the age of an opinion is not

allowed to increase. For example, if the threshold is fixed to

be of ten gossip cycles, opinion about a node of age ten would

indicate that the node has either crashed or is in a different

network partition. During subsequent gossip cycles, the age

of such an opinion is not incremented further. This fulfills our

requirement for a client to keep track of and identify all valid

clients interacting with the same server instance and present

in the same network partition.

Fig. 5: GS state of client #2 when

client #1 is unreachable

For example, if the client #2 has the GS state shown

in Figure 5, it infers that client #1 is either not alive or

is in a different network partition. Therefore, opinion about

the DCBN state of client #1 should not be used for DCB.

Whenever a client finds its DCBN in the suspicion state, it

can monitor its GS state to understand the group failure trends.

For example, client #2 observes that there are four nodes in

the gossip-set (#2, #3, #4 and #5) whose opinions should be

considered. As per the information available with the client

#2, a majority of these clients do not have their DCBNs

in the closed state. Thus, the client #2 infers a dependency

failure and its DCBN immediately transitions into the open

state. The threshold on the age of opinions is only used for

deciding which opinions should be considered for DCB. Even

if the client #1 is unreachable, the entire set of five clients is

considered for random selection of clients to send the gossip

messages. This is done with the optimistic view that client #1

will become active again.

B. Phase B: Gossip-Set Revision

As the set of client nodes interacting with a given server

node S changes as a result of node failures or activities

related to scaling the services up or down, the valid nodes

still interacting with the server should be able to discover the

latest set of all valid client nodes (the current correct gossip-

set). The phase B of the protocol takes care of this discovery

problem as well as the problem of bootstrapping the newly

joined client nodes in the system.

The server S maintains a state as shown in Figure 6. The

state includes a version number and the identities of client

17

Authorized licensed use limited to: Indian Institute of Technology - BHUBANESWAR. Downloaded on May 30,2022 at 11:50:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Example state maintained

by the server S

nodes that consumed its service till the given point in time.

After every T2 time duration, the server increments the version

number, sends the list to a fixed-size subset of client nodes on

the list and then clears the list.

The clients’ GS states are also annotated with the version

number of the server state from which they were derived.

When a client receives a set-revision message from the server,

it updates its version number based on the message. It discards

the opinions about clients which are no longer in the new

gossip-set suggested by the server. It retains the opinions about

the clients which are still present in the new gossip-set. It adds

optimistic opinions about the new clients found in the gossip-

set. These opinions about the new clients are assigned the

highest age permissible for an opinion in the protocol. Due to

this arrangement, on receiving subsequent gossip-messages,

the client correctly accepts DCBN state information about

these new clients which is encoded in the gossiped opinions

(which are bound to have an age less than or equal to the

highest permissible age).

Fig. 7: Example state update based

on a set revision message

Figure 7 shows an example scenario where client #2

receives a set-revision message from server S. Once the state

is revised, the client starts gossiping with the updated gossip-

set. When a client receives a gossip message from another

client and it contains a GS state annotated with higher version

number, it uses same revision rules to assimilate the new set

- discarding opinions about clients not in the new gossip-set,

accepting opinions about the existing common and new nodes

in the new gossip-set. A gossip message having a GS state

annotated with a lower version number is ignored.

When a new client node joins the system and starts

interacting with the server S, its GS state is yet to be initialized.

At this point, this client’s DCBN module essentially acts as a

traditional circuit-breaker. Following gossip-set revisions, the

client would eventually receive a gossip/set-revision message

which it can use to initialize its GS state.

The notion of version number of GS/server state ensures

that the correct and the most recent information, about which

client nodes constitute the gossip set, is always accepted by the

nodes receiving the information from the set revision messages

or client-client gossip messages. As gossiped information

eventually reaches all nodes in the gossiping cluster, the

information about the latest gossip-set reaches all the clients

present in that set.

V. FORMAL MODELING

To support our claims of superiority of distributed circuit

breaking over the traditional circuit breaker pattern, we attempt

to model three systems - a system that uses GEDCB, one that

uses the traditional circuit breakers (CB) and a baseline system

that uses no resiliency pattern. We can get a good idea about

the efficacy of our proposals based on the relative performance

of the three models.

In this work, we model the systems using the UPPAAL [22]

model checker. UPPAAL is suitable for modeling real-time

systems as networks of timed automata (TA) [23] that may be

extended with data structures. Timed automata are finite state

machines extended with clock variables. UPPAAL provides

clock variables that may be reset. In version 4.1, UPPAAL

allows the usage of a clock variable as a stopwatch [24] by

setting the rate of progress of the clock variable to zero in

certain states, thus, effectively pausing the clock variable in

those states. UPPAAL also allows users to specify functions

that may be invoked on certain state transitions. The systems

in our context have a great importance to the notion of time

with factors like timeout duration, response time, periodicity

of sending gossip messages, revising gossip-set, circuit breaker

transitions etc. affecting the system behaviour. Modeling the

systems in UPPAAL, thus, is well suited for our use case.

UPPAAL also comes with a statistical model checking

(SMC) module [25]. SMC module can monitor several runs

of the system, and then use results from statistics to get an

overall estimate of the value of certain model variables. For

our study, total execution time and the number of timeouts are

the variables of interest that are compared for understanding

the relative efficacy of the three systems under consideration.

We now describe how we modeled the system components

in brief. Table III provides the key model parameters and the

values which were used. It must be noted that, in practice,

deciding values of parameters pertaining to a given resiliency

pattern is very subjective. These parameters should be tuned

taking into account information about average latency, usual

failure rates, availability guarantees etc. In our efforts to model

the systems, we fixed values for some parameters and selected

the others in a way that appears suitable for the case.

A. Modeling the server

Figure 8 shows the timed automaton1 used to model the

server in UPPAAL. The server’s model includes two clock

variables - clock and exec_clock. The former is a utility clock

1In the TA diagrams provided in this work, I denotes a location invariant, G
denotes a guard, U denotes an update and S denotes a channel synchronization

18

Authorized licensed use limited to: Indian Institute of Technology - BHUBANESWAR. Downloaded on May 30,2022 at 11:50:20 UTC from IEEE Xplore. Restrictions apply.

Parameter Meaning Value Used
RT Response Time 4

TP Timeout Period 25

UST Unavailability Streak Time 250

WS Window Size 10

SFT Soft Failure Threshold 2

(H)FT (Hard) Failure Threshold 6

HOFT Half-Open Failure Threshold 1

HOST Half-Open Success Threshold 2

SST Suspicion Success Threshold 2

OD Open Duration 100

CSP Client Shuffling Period 500

T1 Client Gossiper Period 4

T2 Gossip Set Revision Period 40

MRC Maximum Request Count 500

GC Number of clients gossiped to 2

RMC Number of clients receiving

set revision message

2

TABLE III: Key model parameters

Fig. 8: Timed automaton for the server

while the latter is paused when the server halts (by setting its

rate of progress to zero in the halted state). The exec_clock
finally holds the total execution time. A global array buf
coupled with FIFO access functions acts as the server’s request

buffer. A global variable available is set to 1 when the server is

available to serve the clients’ requests and is set to 0 otherwise.

When the server is available and the request buffer is empty,

it waits for a waiting_time duration. If the buffer is not empty,

it waits for RT time before responding to the client whose

request is at the head of the request queue. The server invokes

the respond channel corresponding to the client in order to

trigger sending a response. The function manageBuf() pops the
responded request from the request buffer and updates several

counter variables used for modeling unavailability scenarios

(to be discussed in Section V-B). The server halts when it

successfully responds to a total of MRC requests and it sets

the global variable halted to one.

B. Modeling Failures

The circuit breaker pattern is specially suited for the case

where faults causing dependency failures take a variably large

amount of time to resolve. So, we compare the traditional and

distributed circuit breaking patterns in identical environments

which are characterized by streaks of unavailability. After

responding to ASRC (Availability Streak Request Count)

number of requests, the server becomes unavailable for a UST
time duration. The server, thus, alternates between streaks of

availability and unavailability characterized by the parameters

ASRC and UST.
LetA (0 <A ≤ 1) be the availability of the server. Let Ttotal

denote the time elapsed before the server halts. Let Tuseful

denote the time that is useful for the system to make progress.

Ttotal = Tuseful + Tunavailable

Tuseful = A× Ttotal

If clients keep the server involved for the entirety of the useful

time then the following holds for our models:

Tuseful ≈MRC ×RT

Tunavailable ≈ ((1−A)×MRC ×RT)/A
USC = Tunavailable/UST

We use these results to calculate USC (number of

unavailability streaks) and decide the value of ASRC
for various availability conditions. Table IV provides the

parameter values used to model different availability scenarios.

Availability ASRC USC
1 500 0

0.8 167 2

0.6 84 5

0.4 39 12

0.2 16 32

TABLE IV: Parameters for modeling availability scenarios

C. Modeling a Client That Uses No Resiliency Pattern

Figure 9 provides the timed automaton used for modeling

the client for a baseline system. We include eight clients in the

baseline system. At any given point, five of these eight clients

are marked to be alive. Every client has a utility clock variable

clock that dictates the state transitions. A global counter

variable CPRC (Clients’ Pending Request Count) holds the

size of the pool of pending requests. If a client is marked alive

19

Authorized licensed use limited to: Indian Institute of Technology - BHUBANESWAR. Downloaded on May 30,2022 at 11:50:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Timed automaton for client with no resiliency pattern

Fig. 10: Timed automaton for client using CB or DCBN

and CPRC is zero, it waits for a waiting_time duration before

checking again. If CPRC is not zero, it decrements CPRC by

one and makes a request to the server by pushing its identifier

into the server’s request buffer. On making a request, the client

waits for a stipulated time TP. If the channel respond[cid]
(where cid is the client identifier) is not invoked by the server

for synchronization within the TP period, the client’s request

times out. On this timeout event, the function handleTimeout()
is invoked which increments counter variable TC used for

keeping track of the number of timeouts. The invocation also

removes the entry of its request from the server’s buffer. CPRC
is incremented when a timeout occurs. If the server uses the

channel variable respond[cid] for synchronization before the

time duration TP, it indicates a successful response. The client

halts after the server halts.

D. Modeling a Client That Uses CB or DCB

Figure 10 shows the timed automaton for a client that uses a

circuit breaker (CB or DCBN). It is an extension of the TA we

used for modeling a client which does not use any resiliency

pattern. We include eight clients in each system out of which

five are marked as alive at any given point. Along with the

constructs defined in Section V-C, every client instance of this

type has a local variable cb that encodes the current state

of its circuit breaker. The client model keeps track of the

status of a window of last WS requests it made to the server.

The handleTimeout() and handleResponse() functions trigger

the updating of various counters and the window. Based on

the policies described for the circuit breakers in Sections II

and III, the state of the circuit breaker cb is also updated.

This logic of updating the state is different for traditional CB

and DCBN and is specified in the code that accompanies the

TA formalization in UPPAAL. A client using circuit breaking

waits for the duration OD when it is in the open state. An

"Open Circuit" state and transitions are added to model the

same. The client halts after the server halts.

E. Modeling the Client Shuffler

In a distributed system, service instances may come up or

go down over time due to failures or scaling of the services

up or down. In order to model this real world scenario, we

periodically shuffle the set of active client model instances

that are interacting with our server model. The client shuffler

randomly marks five of the eight client model instances as

alive and the remaining three as dead periodically after every

CSP time period. Figure 11 shows a timed automaton for the

client shuffler module. The client shuffler halts after the server

halts.

F. Modeling the Client Gossiper

For the system using DCB, every client is associated with

a gossiper component. Every client’s gossiper component

should periodically trigger the sending of gossip messages to

a random GC (Gossip Count) number of the clients it knows.

We use the timed automaton shown in Figure 12 for modeling

the gossiper. The GS states maintained for DCB by all the

Fig. 11: Timed automaton for the client shuffler

Fig. 12: Timed automaton for the client gossiper

Fig. 13: Timed automaton for the gossip-set reviser

20

Authorized licensed use limited to: Indian Institute of Technology - BHUBANESWAR. Downloaded on May 30,2022 at 11:50:20 UTC from IEEE Xplore. Restrictions apply.

clients are present as globally accessible data structures. The

logic implemented using the code that accompanies the TA

formalization of the client that uses DCB refers to this data

structure when the DCBN is in the suspicion state. After every

T1 time period, the gossiper invokes a function that modifies

relevant states to mimic the sending and receiving of the gossip

messages and updating a client’s GS state as per the protocol

defined in Section IV. The gossiper halts once the server halts.

G. Modeling the Gossip Set Reviser

The Gossip Set Reviser module is modeled as the timed

automaton shown in Figure 13. The list of clients who

interacted with the server in the last T2 time period is recorded

in a globally accessible array. After every T2 duration, the

reviser component should send this list to the RMC (Revision

Message Count) number of clients on the list. This message

passing is mimicked by invoking a function that updates the

GS state of clients who receive the set revision message as per

the protocol proposed in Section IV. The function call also

triggers the clearing of the list and increment in the version

number. The reviser halts once the server halts.

VI. RESULTS AND COMPARISON

We compose the timed automata described in Section V into

three systems of interest - one which uses traditional circuit

breakers, one which uses GEDCB and one which does not

use any resiliency pattern. We attempted to model a real-world

distributed system that is characterized by persistent failures

along with frequent changes in the set of clients interacting

with a server. We did not model network partitioning within

the set of clients. We performed the following two example

SMC queries on the three models:

E[<= 10500; 500](max : TC)

E[<= 10500; 500](max : exec_clock)

UPPAAL SMC [25] provides the expected maximum values

of certain model variables by using the fact that measurements

follow Student’s t-distribution [26]. The queries shown above

provide the expected maximum value of the variable TC

(timeout count) and the clock variable exec_clock respectively

within the time 10500 units evaluated over 500 simulations.

For a given availability value, we first run a few simulations

to find the time bound by which the system halts. Once the

system halts, the two variables of interest do not increase

in value with time. Hence the queries to find the expected

maximum value of the variables within this experimentally

found time-bound provide the correct estimations.

The expected number of timeouts under various availability

conditions is a variable of interest as it indicates the number of

failed attempts made by the group of clients for the system to

fulfill a given number of requests. The number of timeouts

is also a proxy for the cost-overhead needed in terms of

client and network resources that are wasted when the system

fulfills a given number of requests. Thus, lesser the expected

number of timeouts for a given availability condition, better is

(a) Expected execution time for 500 requests

(b) Expected number of failed requests

Fig. 14: Results of SMC queries

the resiliency of the system. We also measure the total time

required for the system to fulfill MRC number of requests to

probe if the proposed pattern slows down the system progress

as compared to the traditional pattern.

From the data points obtained by running SMC queries on

the three system models, we observe that the time required

to successfully respond to MRC (500) requests by the server

in all three models stays practically the same under any

given availability scenario (Figure 14a). This indicates that the

proposed resiliency pattern does not introduce any significant

overheads that may slow down the system progress. As the

DCBN module is local to the client, no latency overhead is

added for a client to decide if it should send a request to the

server or not.

The data on the number of timeouts (Figure 14b) ratifies the

well-known efficacy of the circuit breaker pattern as compared

to the case where no resiliency pattern is used. It is observed

that GEDCB further reduces the number of timeouts as

compared to the traditional circuit breaker pattern. The faster

inference of a probable dependency failure helps GEDCB

reduce the number of requests that fail. A faster inference

would also help to reduce the possibilities of cascading failures

as client resources are held up without progress for even

shorter time duration when the server becomes unavailable.

VII. DISCUSSION ON GEDCB PARAMETERS AND COST

For any distributed system, deciding the values of system

parameters is a crucial and challenging task. In the case of

21

Authorized licensed use limited to: Indian Institute of Technology - BHUBANESWAR. Downloaded on May 30,2022 at 11:50:20 UTC from IEEE Xplore. Restrictions apply.

systems discussed in this paper, the values of parameters used

in the resiliency patterns and the timeout duration can affect

the behaviour of the system. Selection of appropriate values

is necessary for an acceptable performance of a system. An

empirical or a model-driven approach may be employed for

the same. Mendonca et al. attempted to address this issue

in [27] and presented performance results for a different set

of parameters for a few resiliency patterns using a model

based approach. In GEDCB, the gossip-protocol’s parameters

dictate the efficacy and the additional cost that accompanies

the enhancement over the traditional circuit breaking scheme.

The protocol proposed in section IV does not put a limit

on the size of the gossip-set. Based on the use case, an upper

bound on the size of the gossip-set may be set in order to put

an acceptable bound on the memory requirements, bandwidth

usage for individual gossip messages, cost of processing the

messages and the number of cycles in which the gossiped

information reaches all relevant clients. If the number of active

clients is well beyond the upper bound, the server can partition

the set of all active clients into multiple gossip-sets that operate

in parallel.

The parameters T1 and T2 would also affect the bandwidth

usage for the gossip-protocol. In GEDCB, when a client

crosses the soft failure threshold, it starts suspecting a

dependency failure. The client expresses its suspicion in the

subsequent gossip messages. In the meanwhile, the client

keeps sending requests to the server. GEDCB would be

efficacious only if it is possible to conclude, well before

HFT is crossed, whether a majority of client instances are

also either facing or suspecting a dependency unavailability.

So, the efficacy of GEDCB depends upon how fast this is

propagated to all the relevant clients. By this argument, it

would be desirable for the clients to gossip very frequently.

However, frequent gossiping would increase the network cost.

At this juncture, it is observed that this parameter must be set

keeping in mind the trade-off between the cost and the efficacy

of the resiliency pattern. If gossip messages are sent very

less frequently, the GEDCB will regress to the performance

of a traditional circuit breaker. This is because, in this case,

the circuit breaker might cross the hard failure threshold by

the time any inference may be made on the basis of gossip

mechanism. Figure 15 shows the effect of varying the delay

between two client-client gossip iterations on the expected

number of failures in 0.4 and 0.6 availability conditions.

The delay between two consecutive gossip set revisions

should also be set according to the system at hand. If the

set of client nodes that interact with a given server does not

change frequently, the revision may be done less frequently.

Based on the system characteristics, different policies might

be framed for when to revise the gossip-set. In this work, we

modeled a simple policy to update the gossip set at regular

intervals.

VIII. CONCLUSION

Resiliency patterns are increasingly being used to improve

the resiliency of distributed systems. Modern systems that use

Fig. 15: Effect of gossip period

on expected failures

microservice architectures [2] having large and complicated

dependency graphs often have to employ resiliency measures

to maintain an acceptable QoS. In this paper, we proposed a

gossip-enabled distributed circuit breaking scheme (GEDCB).

We formally modeled systems that use traditional and the

distributed circuit breaker patterns using UPPAAL. We used

UPPAAL SMC to do statistical analysis on the modeled

systems. The results obtained clearly demonstrated the

superior efficacy of GEDCB over the traditional circuit

breaker pattern. Finally, we discussed the additional cost of

implementing GEDCB and the relevant trade offs that must

be considered while deciding the pattern parameters. We

have made our models publicly available2 to facilitate the

replication of our study.

Elaborating on the limitations of this work, the very core

of the proposal is a gossip-based protocol that expects clients

to communicate with each other directly. Needless to say, this

might constrain the network environment in which the clients

using GEDCB may exist. Clients in different subnets utilizing

NAT may not be able to directly communicate with each other.

Practitioners should consider their use case and decide if any

workarounds are possible and how they affect the efficacy of

the pattern.

In this attempt at formal modeling, we considered a

simplified case with a small number of client nodes that

always keep the server busy. In future, we aim to create a

framework for prototyping and implementing various circuit

breaking policies and analyzing the resiliency under different

availability conditions, network partitioning scenarios, varying

parameter values and traffic patterns. There is a need to check

how the GEDCB pattern scales with the number of clients and

how different workarounds such as multiple smaller gossip-

sets affect the efficacy of the pattern. In future, we also aim

to provide a proof of concept implementation for GEDCB.

ACKNOWLEDGEMENT

This work has been partially supported by IIT Bhubaneswar

Seed Grant (SP093).

2The model files may be found at https://github.com/aashaypalliwar/
gedcb-uppaal-models

22

Authorized licensed use limited to: Indian Institute of Technology - BHUBANESWAR. Downloaded on May 30,2022 at 11:50:20 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Analysis and Design for Services
and Microservices, 2nd ed., ser. Prentice Hall Service Technology Series.
Prentice Hall, 2017.

[2] J. Lewis and M. Fowler, “Microservices: a definition of this
new architectural term (2014),” http://martinfowler.com/articles/
microservices.html, 2014, [Online; accessed 29-October-2021].

[3] A. Andrews, D. Lee, A. Buck, D. Coulter, and N. Peterson,
“Resiliency,” https://docs.microsoft.com/en-us/azure/architecture/
framework/resiliency/reliability-patterns#resiliency, 2021, [Online;
accessed 29-October-2021].

[4] A. Andrews et al., “Bulkhead Pattern,” https://docs.microsoft.com/
en-us/azure/architecture/patterns/bulkhead, 2021, [Online; accessed 29-
October-2021].

[5] A. Buck et al., “Retry Pattern,” https://docs.microsoft.com/en-us/azure/
architecture/patterns/retry, 2021, [Online; accessed 29-October-2021].

[6] M. Narumoto et al., “Circuit Breaker Pattern,” https://docs.microsoft.
com/en-us/azure/architecture/patterns/circuit-breaker, 2021, [Online;
accessed 29-October-2021].

[7] M. T. Nygard, Release It! Design and Deploy Production-Ready
Software. Pragmatic Bookshelf, 2007.

[8] Netflix, “Hystrix: Latency and Fault Tolerance for Distributed Systems,”
https://github.com/Netflix/Hystrix, 2012, [Online; accessed 29-October-
2021].

[9] App vNext, “Polly: A .NET resilience and transient-fault-handling
library,” https://github.com/App-vNext/Polly, 2017, [Online; accessed
29-October-2021].

[10] Resilience4j, “Resilience4j: A fault tolerance library designed for
java8 and functional programming,” https://github.com/resilience4j/
resilience4j, 2017, [Online; accessed 29-October-2021].

[11] D. Reisenberger, “Distributed circuit breaker consumable from
within azure functions or distributed, over http,” https://github.
com/Polly-Contrib/Polly.Contrib.AzureFunctions.CircuitBreaker, 2019,
[Online; accessed 29-October-2021].

[12] Microsoft, “Entity Functions,” https://docs.microsoft.com/en-us/azure/
azure-functions/durable/durable-functions-entities?tabs=csharp, 2021,
[Online; accessed 29-October-2021].

[13] A. Demers, D. Greene, C. Houser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” SIGOPS Oper. Syst. Rev., vol. 22,
no. 1, p. 8–32, Jan. 1988.

[14] R. van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure
detection service,” in Proceedings of the IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing, ser.
Middleware ’98. Springer-Verlag, 2009, p. 55–70.

[15] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Trans. Comput. Syst., vol. 23, no. 3,
p. 219–252, Aug. 2005.

[16] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Trans. Comput. Syst.,
vol. 25, no. 3, p. 8–es, Aug. 2007.

[17] K. Birman, “The promise, and limitations, of gossip protocols,” SIGOPS
Oper. Syst. Rev., vol. 41, no. 5, p. 8–13, Oct. 2007.

[18] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, p. 35–40,
Apr. 2010.

[19] Basho Technologies, “Riak,” https://riak.com/, 2009, [Online; accessed
29-October-2021].

[20] Hashi Corp, “Consul,” https://www.consul.io/, 2014, [Online; accessed
29-October-2021].

[21] B. Pittel, “On spreading a rumor,” SIAM J. Appl. Math., vol. 47, no. 1,
p. 213–223, Mar. 1987.

[22] Uppsala Universitet and Aalborg University, “Uppaal 4.1.25,” https://
uppaal.org/, 2019, [Online; accessed 29-October-2021].

[23] “A theory of timed automata,” Theoretical Computer Science, vol. 126,
no. 2, pp. 183–235, 1994.

[24] H. H. Løvengreen, “Stopwatches in uppaal,” http://www2.imm.dtu.
dk/courses/02224/uppaalsw.html, 2021, [Online; accessed 29-October-
2021].

[25] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen,
“Uppaal SMC Tutorial,” International Journal on Software Tools for
Technology Transfer, vol. 17, no. 4, pp. 397–415, Aug 2015.

[26] Student, “The probable error of a mean,” Biometrika, pp. 1–25, 1908.

[27] N. C. Mendonça, C. Aderaldo, J. Cámara, and D. Garlan, “Model-based
analysis of microservice resiliency patterns,” in Proceedings of the 2020
IEEE International Conference on Software Architecture, 16-20 March
2020.

23

Authorized licensed use limited to: Indian Institute of Technology - BHUBANESWAR. Downloaded on May 30,2022 at 11:50:20 UTC from IEEE Xplore. Restrictions apply.

